鳥取県産白炭を用いた炭電池の小型化と高容量化

Miniaturization and high capacity of charcoal battery using white charcoal produced in Tottori Prefecture

吉田大一郎*

Dai-ichiro Yoshida

*電子・有機素材研究所 電子システム科

炭電池を小型化するため、白炭を粉砕、再成形することでシート状の電極を作製した。また、電極材料の賦活化処理、導電性カーボンの添加、水素吸蔵合金の成膜を行った結果、小型化する前と同等の放電容量を維持しつつ、体積を4分の1に小型化した。

In order to miniaturize charcoal battery, sheet-shaped electrodes were prepared by pulverizing white charcoal and remolding it. Electrode materials were activated, a conductive carbon was added, and a film of a hydrogen storage alloy was formed. As a result, the volume was reduced to one-fourth of the original volume, while a discharged capacity was kept equivalent to that before miniaturization.

1. はじめに

平成23年3月11日に発生した東日本大震災後、 防災に対する意識が高まり、非常用備蓄品への関心が 高まっている。その中でも、大震災では長時間の停電 が発生する可能性もあることから、夜間の照明機能、 携帯電話の充電機能等、最低限の電力供給が求められ ており、非常用電池へのニーズが高まっている。

電池には一次電池と二次電池がある。一次電池は放 電後の再充電を行うことはできないが、二次電池は、 充電可能であり繰り返し使用することができる。非常 用電池として用いられているものは一次電池が多いが、 非常時の発電方法として想定される手回し発電等によ る充電が可能な非常用二次電池が必要とされている。

代表的な二次電池としては、リチウムイオン電池、 ニッケル水素電池、鉛電池等がある。これらの電池を 非常用として用いる場合、ニッケル水素電池及び鉛電 池は過放電状態で長期保管すると劣化するという問題 がある。またリチウムイオン電池は充電の際は、定電 流定電圧方式が用いられており、過充電にならないよ う制御されていることから、手回し発電等では充電に は適さない¹⁾。

近年、新しい電池として炭電池が研究されている²。 炭電池は、鳥取大学によって開発された低コストで簡 易な構造の二次電池であり、充電に専用充電器を必要 とせず、手回し発電等で充電が可能なため、非常用の 二次電池として使用できる可能性がある。

炭電池は、電極にかたまり状の(焼成した形のまま の)炭を用いているため、形状の変更、特に小型化が 困難である。また、放電容量が小さいことから、放電 容量をいかに増大させるかが課題である。そこで本研 究では、炭電池の小型化のために、炭電極を粉体化し、 バインダーと混練し再成形を行うことでシート状の電 極を作製する。また、高容量化のために、賦活化処理、 導電材の添加、水素吸蔵合金の成膜を行う。賦活化処 理では、電極の表面積が増加することによる反応面積 の増加、導電材の添加では、電極の内部抵抗の低減、 水素吸蔵合金の成膜では、水素吸着量の向上がそれぞ れ期待できる。本論文では、これらを検討した結果に ついて報告する。

2. 炭電池の動作原理

炭電池の動作原理を図1に示す。充電時は、正極で 式(1)、負極で式(2)の反応が進み、塩化物イオン、 水素イオンがそれぞれ電荷の受け渡しを経て、電極内 に塩素、水素が吸着される。一方、放電時は正極で式 (3)、負極で式(4)の反応が進み、塩素と水素がそ

15

れぞれの電極から脱離し、水溶液中のイオンとなる。

- $2Cl^{-} \rightarrow Cl_2 + 2e^{-}$ (1)
- $2H^{+} + 2e^{-} \rightarrow H_{2}$ (2)
- $Cl_2 + 2e^- \rightarrow 2Cl^-$ (3)
- $H_2 \rightarrow 2H^+ + 2e^- \tag{4}$

図1 炭電池の動作原理

3. 実験方法

3.1 小型炭電池の製作方法

図2に小型炭電池の製作手順を示す。

- 原料は、鳥取県産の白炭(錦生燃料(有)製)を用い、粉砕して粒径を250~850µmに調整する。
- ② 上記白炭粉末を CO₂雰囲気中において、1000 ℃ 2
 時間焼成することにより賦活化処理を行う。
- ③ ②の白炭粉末と、0 ~ 30wt%の導電性カーボン (Fuel Cell Earth 製カーボンブラック バルカン XC-72)及びバインダー (PVDF: PolyVinylidene DiFluoride)を溶剤(1-Methyl-2-pyrrolidone)に 溶解させ混練を行いペースト状の炭にする。
- ④ ペースト状の炭を、集電体である Ti メッシュに塗 布し、乾燥することでシート状電極とする。
- ⑤ シート状電極の表面にスパッタリング法により、水素吸蔵合金として白金を成膜する。成膜はスパッタリング装置(日本電子製JFC-1600)により、アルゴン雰囲気中にてスパッタ電流10mA、スパッタ時間150秒の条件で行う。スパッタレートから推定される白金の膜厚は10mmである。
- ⑥ 上記の手順によりシート状電極を2枚作製し、その
 間にセパレータ1(フッ素樹脂メッシュ)とセパレ
 ータ2(石英ウール)を挟むことで1セルとする。

⑦ 電解液は、KOH、HCl、NH4Cl水溶液をモル比1:1: 4 で混合した電解液(1:1:4 電解液)を用いる。また、同電解液はKOHやHClといった劇物を含むため、実用面でより使いやすい電解液として飽和NaCl水溶液を電解液とした炭電池も同様の手順で作製する。

図2 炭電池の製作手順

3.2 小型炭電池の外観

図3に作製した小型炭電池の外観写真を示す。比較 のため、かたまり状の炭を用いた電池の外観も示す。 寸法は5×8×0.7 cm であり、かたまり状の炭を用いた 炭電池の約4分の1の厚みである。セルと電解液は、 フィルム製バッグに収納し、バッグの口を熱融解によ って封止することで密閉性を高め、電解液の蒸発を抑 えている。

3.3 性能評価方法

電池の性能評価のため、充放電試験器(エヌエフ回 路ブロック製 AS-510-LB60)を用い、表1に示す充放 電繰り返し試験を行う。

充電方式	CCCV		
充電電流	150 mA		
充電電圧	2 V		
充電時間	30 分		
放電方式	CC		
放電電流	50 mA		
放電終了電圧	0.1 V		

表1 充放電繰り返し試験条件

4. 結果及び考察

電極の賦活化処理、導電性カーボンの添加、水素吸 蔵合金の成膜が放電時間へ及ぼす影響について調べる ため、充放電試験を行った。以下にその詳細について 述べる。

4.1 賦活化処理の影響

図4に賦活化処理の有無による放電電圧と時間の関 係を示す。なお電極はいずれも導電性カーボンを 10wt%添加し、水素吸蔵合金を成膜しない条件とした。 賦活化処理を行った電極では、行っていない電極と比 較し約6倍に放電時間が増加した。これは、賦活化処 理により白炭粒子の表面積が増加し、反応面積が増加 したことによるものと考えられる。また、賦活化処理 を行った場合は、放電開始時の電圧ドロップが減少し ている。これは、賦活化処理により炭に含まれる窒素 等の不純物が酸化物としてガス化したことで、カーボ ンの純度が上がったことと、高温のためグラファイト 化が進み、内部抵抗が低下したことによるものと考え られる。

4.2 導電性カーボン添加の影響

図5に導電性カーボンの量を 0 ~ 30wt%に調整し た際の放電電圧と時間の関係を示す。なお電極はいず れも賦活化処理を行い、水素吸蔵合金を成膜しない条 件とした。導電性カーボンを10wt%添加した電極では、 添加のない電極の約3倍に放電時間が増加した。これ は、導電性カーボンの添加により、電極の内部抵抗が 低下し、充放電時のエネルギーロスが減少したためと 考えられる。また、導電性カーボンを添加した電極の 放電開始時の電圧ドロップは、いずれも導電性カーボ ンの添加のない電極と比較し小さくなっており、この ことも内部抵抗が低下したことを示している。炭電池 の内部抵抗を測定した結果、導電性カーボンの添加の ない電極では13.1 Ωであったのに対し、10wt%添加し た電極では 5.7 Ω であった。また、導電性カーボンを 10wt%添加した電極と 20wt%添加した電極では、放電 時間はほぼ変化はなく、30wt%添加した電極ではわず かに減少した。導電性カーボン自体は、水素や塩素を 吸着しないため、導電性カーボンが増えたことで水素、 塩素の吸脱着する箇所が減少し、放電時間が低下した と考えられる。

4.3 水素吸蔵合金の成膜の影響

図6に水素吸蔵合金を正極または負極に成膜した電 池の放電電圧と時間の関係を示す。比較のため、成膜 がない場合のデータも併せて示す。なお電極はいずれ も賦活化処理を行い、導電性カーボンを 10wt%添加す る条件とした。水素吸蔵合金を負極に成膜した場合は、 成膜がない場合より約 20%の放電時間の向上が見られ た。これは、水素の吸脱着反応を行っている負極に水 素吸蔵合金を成膜したことで、負極での水素の取り込 み量が増加したものと考えらえる。また、水素吸蔵合 金を正極に成膜した場合は、成膜がない場合の約 50% に放電時間が減少した。これは、正極に水素吸蔵合金 を成膜した場合、負極での水素の取り込みが阻害され ていることが考えられる。

4.4 電解液の影響

図7に1:1:4 電解液(KOH、HCl、NH4Cl水溶液を モル比1:1:4 で混合した電解液)及び飽和 NaCl水溶 液を用いた場合の放電電圧と時間の関係を示す。なお 電極はいずれも賦活化処理を行い、導電性カーボンを 10wt%添加し、負極に水素吸蔵合金の成膜を行う条件 とした。電解液として飽和 NaCl水溶液を用いた場合は、 1:1:4 電解液を用いた場合の約70%に放電時間が減少 した。放電時間と電流値から放電容量に換算すると飽 和 NaCl水溶液を用いた場合は16 mAh、1:1:4 電解液 を用いた場合は23 mAh である。詳しいメカニズムは 今後検討を行う必要があるが、電解液中の水素イオン 濃度、塩化物イオン濃度が関係していると考えられる。

図7 1:1:4 電解液*(KOH: HCl: NH₄Cl=1:1:4 (モル比))及び飽和 NaCl 水溶液を用いた場合の放電電圧と時間の関係

4.5 まとめ

今回得られた電池の性能比較を表2に示す。小型炭 電池①、②の電極はいずれも賦活化処理を行い、導電 性カーボンを10wt%添加し、負極に水素吸蔵合金の成 膜を行う条件である。小型炭電池①の放電容量は従来 品と同等の値を維持しつつ、厚みは4分の1となった。 一方、小型炭電池②の放電容量は、小型炭電池①の約 70%となった。

表 2 開発前後の電池性能	比較
---------------	----

	従来品 (かたまり状 炭電極)	小型炭電池①	小型炭電池2
出力電圧 (V)	1.5	1.5	1.5
放電容量 (mAh)	23	23	16
単位体積当たり 放電容量 (mAh/cm ³)	0. 21	0. 82	0. 57
寸法 (w×d×t) (cm)	5.5×6×3.3	5×8×0.7	5×8×0.7

電解液 ①1:1:4 電解液、②NaCl 飽和水溶液

5. おわりに

炭電池の小型化のため、電極を粉砕、再成形するこ とでシート状電極を作製した。賦活化処理、導電性カ ーボンの添加、水素吸蔵合金の成膜による放電容量の 増大について検討を行った結果、従来の炭電池と同等 の23 mAh の放電容量を維持しつつ、4分の1の厚み の電池を作製した。市販の単3型マンガン電池の放電 容量が約700 mAh であることから、放電容量は十分と は言えず今後の課題である。さらなる放電容量の増大 のためには、電解液の検討やセル構造の見直し等が必 要と考えられる。

謝辞

炭電池の製作や評価技術については、前鳥取大学光 エレクトロニクス工学研究室の安東孝止教授に多くの 有益なアドバイスを頂きました。ここに心から感謝を 申し上げます。

文 献

- 芳尾真幸、小沢昭弥; リチウムイオン二次電池、 日刊工業新聞社、p.161(2000).
- 2) 平成27年度 修士学位論文要旨・卒業研究発表 要旨 M2-16(2016).